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The indirect method of the calculus of variations is used to optimize inter-

planetary round-trip trajectories for the case of a single, central, attracting

body. The method of solution makes use of certain partial derivative properties

of the Lagrangian multipliers associated with the Mayer formulation of the varia-

tional problem. This property of the multipliers allows the construction of

mathematical expressions for certain other partial derivatives that must vanish

when an optimum round trip has been found. These expressions are developed for

the cases of propulsion systems using (1) fixed thrust and specific impulse or

(2) variable thrust and constant exhaust jet power. Two numerical examples dem-

onstrate how the analytical results may be applied to the solution of round-trip

problems including (1) actual three-dimensional planetary positions and (2)

planetocentric maneuvers.

INTRODUCTION

Failure to optimize the flight trajectory when planning interplanetary mis-

sions can result in substantial penalties in vehicle performance. For low-

acceleration vehicles, such as those employing electric propulsion systems, it is

desirable to vary the thrust vector optimally with time in order to achieve maxi-

mum performance. Solutions for optimum one-way Journeys have been obtained by

using both the direct and indirect methods of the calculus of variations. Sev-

eral examples of solutions by the indirect method, with which this report is con-

cerned, are given in references 1 to 5. In order to apply such solutions to the

round-trip problem, the outbound trip must be combined with a similar inbound

trip in such a way that, at return to Earth, some specified parameter (e.g., pay-

load) is maximized. Systematic tri_l-and-error procedures for doing this can be

found in references 4 and 5.

This report presents a variational solution for the Complete round-trip

problem. The method of solution makes use of certain variables needed for the

solution of the inbound and outbound trips to identify the characteristics of the

overall optimum for the round trip. Specifically, it is shown that it is possi-

ble to construct such partial derivatives as that of return mass with respect to

the outbound travel time.



The method discussed herein is based on the fact that the Lagrangian multi-
pliers, as used in the Mayer formulation, are the partial derivatives of the
function to be extremized with respect to the problem variables. (An explanation
of this characteristic of the multipliers can be found in ref. 6. ) This fact may
be applied to a variety of different problems. For example, the method is ap-
plied to a three-dimensional, two-body round-trip transfer using an electric pro-
pulsion system with either (i) fixed thrust and specific impulse or (2) variable
thrust and constant jet power. Also, the problem of including the effects of
planetocentric maneuvers is considered in both cases.

In order to demonstrate how the analytical results derived maybe used in
specific numerical problems, two Earth-Mars round-trip calculations have been
made. The first of these omits the effects of planetocentric maneuversbut does
illustrate the usefulness of the suggested criteria for the identification of an
optimumround trip in the case in which three-dimensional ephemeris data is used.
The second example considers a two-dimensional transfer between circular orbits
with the planetocentrie maneuvers included.
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SYMBOLS

thrust acceleration, m/sec 2

first integral of Euler-Lagrange equations

jet velocity, m/sec

the operator, _/_Xi(O)

Weierstrass excess function

i0

F _ hif i
i=l

fi constraint relation

g function of initial and final conditions

J functional to be made an extremal

K constant of integration

m mass, kg

P power, w

Pj jet power, w

t time, sec



t w

U,V,W
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x,y, Z

T

dr

br i

rl

o

K

A

Subscripts :

f

L

max

P

PP

S

0

waiting time

components of heliocentric velocity vector

gravitational potential

coordinates in Cartesian, inertial reference system, m

powerplant specific weight, kg/w

mass-flow rate, kg/sec

dummy variable

arbitrary differential in any variable y

variation in Yi at constant time

propulsion-system power efficiency

angle between thrust vector and x,y-plane, radians

switching function

Lagrangian multiplier

gravitational field strength, m3/sec 2

angle between thrust vector and x-axis, radians

final

payload

maximum

planet

powerplant

supply

initial
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Superscripts :

d( )/dr

-- taken from planetocentric trajectory calculations

ANALYSIS

The method to be presented is best explained with the aid of an example;
however, in order to create sufficient framework for a round-trip example, it is
necessary to consider first a typical solution of the one-way trip by the indi-
rect method of the calculus of variations.

Solution of the One-WayTrip

The problem to be solved here is that of finding the thrust direction and
magnitude, as functions of time, which minimize the propellant consumedfor a
one-way interplanetary transfer satisfying specific initial and final conditions.
Before this can be done, however, the propulsion system must be confined to some
desired modeof operation. Onemodecommonlyused is that of continuously vari-
able thrust at constant Jet power Pj = _c2/2. Solutions using this constraint
are given in references i, 3, and 5; however, for the main development given
here, it is assumedthat the thrustor operates at a constant jet velocity and has
two alternative choices for the propellant-flow rate, that is,

c = const

= _maxor 0

where c is the jet velocity and _ the propellant-flow rate. Other develop-
ments using these constraints maybe found in references 2 and _. The variable-
thrust modeis considered later as a modification of the main presentation.

Rather than minimize the propellant consumption_ the problem is solved by
minimizing the negative of the final mass, subject to the following constraints
(see fig. 1):

fl = 6 + Vx - (_)cos _ cos 8 = 0 (la)

f2 = v + Vy - (Cm-_)sin @ cos 8 = 0
(lb)

f3 = _ + Vz - (_) sin 8 = 0
(lc)

f4 =i- u = 0 (id)

fs =y-v=° (le)



f6 = { - w = 0 (if)

f7 = _ + _ = 0 (ig)

f8 = 6(_max - _) = 0 (lh)

f9 = _ = 0 (li)

flo= _m_ : o (lj)

where V(x,y,z) = -_/(x 2 + y2 + z2)i/2 is the gravitational potential and

Vx = 8V/Sx, Vy = 8V/_y, and so forth. The expressions fl to f6 are the two-

body equations of motion in three dimensions; the remaining expressions are re-

lated to the constraints imposed on the thrust device.

When this is formulated as a Mayer problem (ref. 7), the functional to be

J = g + Xif i dt = + F dt (2)

v0i=l

minimized is

where g (which is -mr

final conditions only.

for this problem) is some function of the initial and

The Euler-Lagrange equations for this problem are

j -- .,

where the Tj are the problem variables u, v, v, x, y, z, m, _, c, 8max' @'

and @. More specifically, equations (S) are

XI = -h4

_2 = -_5

_4 = _lVxx + _2Vxy + _Jxz

i5 = _iv_ + _2Vyy + _3Vyz

_6 = _ivzx + _2Vzy + _3Vzz

(_a)

(_b)

(_c)

(_)

(_e)

(_)



and

k8(_max - 2_) -

If _ _ 0 and

i7 c_ (hI cos @ + h2 sin _)cos e + Z5 sin e]

c[(h I cos @ + k2 sin @)cos e + h 5 sin e]

m

cos _ + h 2 sin @)cos e + h5 sin e]

m

ilO = _k8

c__ (h2 cos $ - hI sin _)cos _ = 0
m

c-_[h 5 cos e - (hI cos @ + h2 sin $)sin e
m

cos e _ O, then equation (4_) gives

h 2

tan ¢ = hl

=0

COS _ =

hI

2_+ + h 2

+h7=O

(4g)

(4h)

(4i)

(4j)

(4z)

Also, equation (4Z) gives

sin _ =
h 2

tan e =
h5

Thus, the three-direction cosines for the thrust acceleration are

hl k2 k5

cos _ cos e = _-_-_-_-_-_-_-_-_-_,sin _ cos e = _, sin e =_'_'_'_'_'_'_'_'_'i_ (5)
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where

An application of the Weierstrass-Erdmann Corner Condition (ref. 7)_

+

(8)

indicates that all the Lagrangian multipliers except h8 are continuous across

any corners that may occur in the trajectory. For this problem, corners will oc-

cur when either the sign of A or the value of _ is changed.

The Weierstrass "E" test may be used to find the appropriate sign for A, as

well as the value for _ at each instant of time. This test states that, for a

minimum of J,

12

j=l

(7)

where the starred functions differ from the unstarred functions by finite but ad-

missible amounts. The unstarred functions, furthermore, are assumed to be the

minimizing functions. The only quantities allowed such strong variations in this

problem are A (which may change sign) and _. Thus, equation (7) can be written

as :

o ! ffK (8)

where

K or g_ = _+__cA_ h7
m

For _ = _* equation (8) reduces to

-- m

from which, for _ # O, it can be seen that the positive sign must be chosen for

A. Also_ if K = K*, then equation (8) shows that 0 ! (6 - _*)K; it follows,

then, that 6 = _max when K > 0 and 6 = 0 when K < 0.

Finally, the transversality relation for this type of problem may be written

as (ref. 6)



_F _F

- _ _t+ _-_jdy

j :i j=i _to

= o (9)

Depending on the type of boundary conditions imposed on the trajectory, this re-

lation will give various additional boundary conditions that must be satisfied.

For example, if a known value for one of the variables is desired at a boundary,

then its differential in equation (9) is zero_ otherwise, the coefficient of its

differential must be zero and_ thus_ becomes an additional boundary condition.

For the kind of problem formulated here; where the function F does not de-

pend explicitly on time, the coefficient of dt is a constant along the flight

path (ref. 7) and is commonly referred to as the first integral of the Euler-

Lagrange equations; that is,

12

C = F - 3_'-"_"_'J = -(XI fl + Z2v + Z3w + X4k + _3Y + X6 _' - Z7 _B)

'J=i

= const (i0)

where the conditions F = 6 = _max = 0 have been invoked.

In order to solve numerically for an optimum trajectory; the basic two-point

boundary value problem must be overcome. This is usually accomplished by using

a multivariable Newton-Raphson iteration scheme. In this method, the partial de-

rivatives of the end conditions u, v, w; x; y, and z with respect to the ini-

tial values of the Zi will be needed. These may be obtained along with the

solution of equations (i) and (4) by simultaneous integration of the differential

equations developed in the appendix. It should be noted here that equations (4)

are homogeneous in the hi, and, thus, the solution is independent of the initial

value of one of the multipliers. The choice, however, sets the numerical scale

on the multipliers.

Optimization of Round Trip

As pointed out in reference 6, the Lagrangianmultipliers (or_ more gener-

ally, the expressions for 3F/8_j) are the partial derivatives of the function t(

be extremized with respect to the problem variables. This fact allows the compu-

tation of first-order changes in mf due to changes in the boundary conditions
at either end of the trajectory as well as changes in the parameters c and

6max" To illustrate how the partial derivative property of the multipliers may

be used, consider optimizing the outbound and inbound heliocentric transfers of

8



an Earth-Mars round trip (fig. 2(a)). For each transfer, the vehicle is assumed
to begin and end with planet kinematic state variables and to be powered during
the propulsion phases of the entire journey by a thrustor with constant c and
_max" These constraints are the sameas those developed in the preceding section
for a one-way transfer.

Optimum allocation of heliocentric transfer time. - If the variational solu-

tion for an outbound trip of given time has been found by solution of the two-

point boundary value problem, and a corresponding inbound transfer has also been

found, then, for this pair of reference trajectories (characterized by c, _max,

total mission time, wait time, and takeoff date) a neighboring optimal trajectory

can be found that differs only from the reference trajectory in outbound travel

time tI. Since equations (i) are satisfied along each outbound trajectory, it
follows that

df tl I / iIzI_-_i illtl

tl 8F 8F
F dt = (F dr) + 8_i + 8y dt = 0

to Li=l
m# tO 0

(lla)

The relations

d ( ) • (llb)d-T 8Yi = 8Yi

are now used in equation (lla) to assist in the integration by parts of the sec-

ond member on the right to give

o_- -

i=l to Jt 0 <i=l

Since equations (3) are also satisfied, the second member of equation (12) van-

ishes and leaves

0 = dt + _ B (lSa)

"= /Ito

In order to allow for arbitrary changes in the end conditions, the equations

dYi = Yi dt + 8Yi i = i, 2, ., 12 (iZb)



where the _i are taken from the optimal trajectory, may be introduced into
equation (13a) to give

1 t:_F _F

i=l i=l to

Since equation (13c) holds along all the trajectories so far considered, it will

hold in particular for passage between the end points of the two neighboring ex-

tremals considered here. Thus, it follows in this case that

-X7(tl)dm I = (C dt + X1 du + k2 dv + h 5 dw + k 4 dx + h5 dy + h 6 dZ)tl (14)

At this point it can be seen that, for hV(tl) = i, equation (14) has the form of

a total derivative for m(tl). This fact is an indication that the Lagrangian

multipliers are the previously mentioned partial derivatives.

To continue, equation (i0) is used with equation (14) to give

-hT(tl)dml = [hl(dU - G dr) + h2(dv - _ dt) + h3(dw - _ dt)

+ _4(dx - _ at) + _5(dy - _ at) + _6(dz - _ at) + _:_]tI (15)

Following reference 7, the differentials dx, du, and so forth belong to the path

of the target planet, whereas the other terms are to be taken from the trajectory

of the vehicle. Thus_

= [Xl( % - _) + h2(% p - %) + h3({_p - {_) + h4(_ p - h)_7 _tl _ _

+ XS() p - )1 + X6($.p - _.) + h76]t I (161

where the subscript p is used to designee terms taken from the target planet's

p_h.

Once the two-point boundary value problem has been solved,

4

_p

If the definition of K is used and it is recognized that the differences

% - {i, _p - _, and so forth are due only to thrust acceleration, equation (16)
becomes

(17)

lO



• _7(tl)_l= (K_)tldtI (lS)

Thus, an expression has been derived for the change in target planet arrival mass

m I due to a change in the outbound travel time. If the mission time and wait
time, as given by the reference pair, are considered constant, then a change in

t I also results in a change in t 2. The resulting change in m I also affects

m 2 since they are equal for missions with no planetary maneuvers. Thus,

t 2 = tI + tw

tw = const

m 2 = m I

and, therefore,

dt2 = dtI (19a)

_2 =_i (19b)

The inbound trajectory must now be analyzed in a similar manner to determine

changes in the Earth return mass m 3 that are caused by changes in m 2 and t2.

From equation (13c) for t O = t2 and tI = t3,

dt + kI du + h 2 dv + X3 dw + h4 dx + h5 dy + X6 dz + h 7 dm)it310 (c
It2

(2o)

which becomes

hT(ts)dm 5 = h7(t2)dm2 - (K_)t2 dt 2
(21)

where the negative sign occurs because initial conditions, rather than final con-

ditions_ are affected. Combining equations (18), (19), and (21) then gives

1 [h7(t2) 21din3= _77LLT_v (_)tI - (_)t dtl
(22)

This equation is then a fundamental equation expressing changes in Earth re-

turn mass due to changes in the outbound travel time for a round trip with fixed

mission and wait times. On the basis of the sign of the coefficient of dt I in

equation (22), it is then possible to decide whether or not tI should be in-
creased or decreased. Furthermore, since the coefficient will vanish for optimum

tl, it is possible to impose this condition on the initial hi(t2) of the inbound
transfer. This effectively eliminates one of the six hi(t2) from the two-point

ll



boundary value problem and requires that t 3 be used in place of the multiplier
to satisfy the six kinematic state variables. Consequently, total mission time
becomesa dependent variable, but an optimumround trip is obtained by solving
the boundary-value problem once for the outbound trajectory and once for the in-
bound trajectory. Imposing the condition that the coefficient of dt I in equa-
tion (22) be zero is a necessary condition but does not guarantee a unique solu-
tion, and other meansshould be used to determine which local optimum has been
found.

Optimum c and _max" - in the problem just considered, c and _max were

held constant. If they are considered as problem variables, as in the preceding

variational solution of the one-way transfer, the transversality condition

(eq. (9)) for changes in c and _max only is

[h7(tl) - l.O]dm I + (h 9 dc + hlO d_nax)

t I
=0

tO

(23)

where the differentials of the kinematic state variables are zero when initial

values of the hi(to)(i = l, 2, . ., 6) are found to satisfy the final values

u, v, w, x, y, and z for the target planet. In order that equation (23) be

true for arbitrary values of the differentials, it follows that

h7(tl) = 1. O

h9(to) = h9(tl))I (24)
hlO(tO) = hlO(tl

The first expression, h7(tl) = 1.0, can be satisfied by scaling, as previously

explained, since equations (4) are homogeneous in the hi . The initial values of

h9 and kl0 can arbitrarily be zero since equations (1) and (4) do not contain

these multipliers. The last two expressions can then be satisfied by finding c

and _max such that h9(t l) = hlO(t l) = 0. Since no bounds have been placed on

these parameters, however, the final mass will continue to increase with both c

and _max, and the conditions (24) will only be satisfied in the limit as both c

and _max approach infinite values. This apparent difficulty vanishes once more

realistic problems are considered. For example,

mL = m 3 - mpp

and

a_maxC 2mpp = = = 2 (c)
(25)

12



where

%

mpp

Ps

Pj

n(c)

payload mass

powerplant mass

factor of proportionality

power supplied to thrustor

jet power

thrustor efficiency (assumed a function of c only)

With these simplifying assumptions and equation (13c), the total effect on mL

due to tl, c, and _max can be shown to be

__max _c I FhT(t2 ) )]I

Fcm 2 i FX7(t2 )

-_- +_7-TTqT[_TTqT_lO(tl)+ hl0(t3)lld_ma x

i [_7(t2) ]
+ _L _ (KI)tl- (K_)t2jdtl

(26)

As with equation (24), the signs of the coefficients in equation (26) indicate

the directions in which the variables should be changed but not the.amount of

change. The amounts can be found, however, with an iteration scheme designed to

make the three coefficients vanish by appropriate changes in c, _max, and t 1.

Solution for Variable Thrust

Another type of thrustor constraint frequently employed is continuously var-

iable thrust with constant jet power. In order to include this case, equa-

tions (1) must be modified by the deletion of f9 and fl0 and the replacement

of f8 with

#c2 - ePj = 0 (27)

where P. is treated as a constant. Actually, to be thoroughly consistent, an
J

equation such as Pj = 0 should be added. As pointed out in references l, 3,

and 5, though, this thrustor constraint results in trajectories that are indepen-

15



dent of Pj and leads to the relation

m(t) : m(0)

1 + m(0) #t a2

2Pj -Io at

(28)

where a, the thrust acceleration of the vehicle, is not a function of Pj.

Thus, the best power can be found without the aid of the additional hi that

would be associated with _j = 0.

The introduction of the required modifications into equations (1) results in

the following changes in equations (4h) and (_i), respectively:

_ c [(hl cos _ + h 2 sin 9)cos a + h3 sin 8] + h8c2 + k7 = 0
m

- _ [(h I COS Jl + k2 sin @)cos e + k3 sin 8] + k82c_ = 0
m

which, with the aid of equation (5), become

-c( A- k8c) + k7 = 0

and may be combined to give

A

ks = 2c--{ _ / o

cA
Z 7 =_ (29)

Furthermore, equations (29), (5), and (4g) can now be combined to give

_k 7
%'7= _ A = _ k7 =

m2 m m

which, after integration, yields

h7m2 = const = K > 0

Finally, equations (27), (29), and (30) allow the thrust acceleration to be

written as

a = c____ i = PJ A
m cm K

(30)

(3i)

14



As mentioned previously, the acceleration a is independent of Pj and_ fur-
thermore, dependsonly on the chosen boundary conditions. This is most easily
demonstrated by substituting equation (29) into equation (10)_ which gives

c = - 1_. +_,2÷ +X3_ +>,41 +_ +_,6 _. - _ (32)

This expression is then solved for the thrust acceleration in the form

2[(_lvx+_2v_+_3Vz)- (_* +x3_+x6_.)- c]
a = A (33)

which can be seen to be a function of time only. All other aspects of the prob-

lem are the same with the exception that the Weierstrass test yields only the

proper sign for A.

When consideration is made of the round trip, t I is now the only variable
that must be considered, and the variable-thrust feature has no other effect on

the preceding development. Then_ because of equation (29)_ the expression for
can be written as

K

c cA

m 2m

Thus, equation (18) becomes

dml= -_-
1

Accordingly, equation (22) becomes

dm3= ____-_/t I - (_ dtl
(3_b)

Equation (31), when introduced into equation (54b) along with equation (30),

gives

m2 I-2

_3 = 2-_jLa (tl) - a2(t2)]dtl
(54c)

Thus_ in the special case of variable thrust_ an optimum round trip can be recog-

nized by the fact that the thrust acceleration at the end of outbound transfer is

equal to that at the start of the inbound transfer. Here, again_ it is possible

to impose this condition on the inbound transfer and have the total mission time

become a dependent variable.

15



Inclusion of Planetocentric Maneuvers

Up to this point_ the consideration of planetocentric escape and capture ma-
neuvers has been omitted for the sake of clarity. Nevertheless, their inclusion
presents no obstacle to the methods so far presented, as will be demonstrated in
this section.

The simplest method of including planetocentric maneuvers is to incorporate
the duration required for such maneuvers into the waiting phase and consider c
and _max as constants. In this special case, equations (19) must be modified
so that m2 is someother function of mI that will depend (in form) on the
particular maneuverand the method of computation used. Thus, equation (19b) be-
comes

 f(ml)

where

m 2 = f(ml) (35b)

If this expression had been used in the preceding development, equation (22)

would have taken the form

[ _f(m I ) 21

1 Ih7(t2>

dm 3 = _ [ h7(tl) (K_)t I - (K_) t dt I

(55c)

Like equation (22), this condition can also be imposed on the solution of the in-

bound trajectory and the optimum mission time found as part of the return-trip

solution.

As another example, consider the case of combining, in an optimum fashion,

the heliocentric and planetocentric parts (each considered as a separate two-body

problem) of a one-way trip using the variable-thrust constraint in all phases.

Stated in another way, this is a problem of finding the best values of tI and

t2 for given tO and t3 in figure 2(b).

The case of variable thrust has been selected here because a simple approxi-

mation that is free of c and _max can be used for escape or capture maneu-

vers. In particular, it is reported in reference 1 that variational solutions

for this type of trajectory compare well with those using constant-thrust accel-

eration tangentially directed. This greatly simplifies trajectory computations

and allows the approximation

_O _t
_2(t)t-_ a 2 dt (56a)

16



for use in equation (28). This approximation has been used in reference 8, where

ft
charts of a 2 dt are also presented for a number of such maneuvers.

Variations in the Earth escape time will cause the following changes in the

heliocentric initial conditions:

mI aWm

dml = - 2P-_ +2 At I _ dt I
(36b)

At I = t I - tO

which is derived by using equations (28) and (36a). There will also be similar

changes in the initial velocity and positions components, but it will be assumed

in this simplified analysis that there is no relative motion between the vehicle

and the planet. If the methods of the preceding development are followed, the

initial changes are transmitted to the end of the heliocentric transfer by

_7(t2)dm2 = h7(tl)dm I

a(tl )2 a(t2) 2K dt 2

2Pj K dt I + 2Pj
(37)

which also includes the effects due to varying t2.

then combined to give

IA7(tl)ml2 [_12 d_l ]
k7(t2)dm2 = -( _ + 2 Atl_ I _J

+

Equations (37) and (38b) are

a(tl) 2K.I2Pj dtl +

a(t2)2K dt 2

2Pj

(38)

Since, h7(tl)m2 = K = h7(t2)m_, equation (38) reduces to

m2 + )2"
dm 2 = _ + a(tl )2 + 2 Atl_ I _Jdt I a(t 2 dt

(39)

The target-planet capture spiral undergoes the initial mass variation dm 2 as

well as the initial time change dt 2. Thus_

din3 =m_ [ d_2 ] +{m3_2 dm 22_j a_ +2 At2_ 2 d--_-_Jdt2 \m2/
(¢o)

17



where

At2 = t 5 - t 2

which, together with equation (39), leads to

{-[_i 2 Atl_l d_l lj
m52 2 .tit 1dm 3 = _ + a(t I) + 2

+ _Z2 + a(t2)2 + 2 At2_ 2 __dt2_ (41)

It can now be seen that the optimum is achieved when the coefficients of dt I

and dt 2 are both zero. In the case of optimum tI this occurs when

+ a(t1)2 -2Atz l (42)

0 tTypical plots of a 2 dt or, equivalently, a-2 At as a function of At_

which can be found in references I and 8, show that d_/d(At) is always negative.

These conditions suggest that, given a heliocentric transfer (which then

gives a(tl) and a(t2)) , the two companion planetocentric transfers, which to-

gether with that heliocentric transfer form an optimum, can be identified di-

rectly from graphical or numerical data for _ and d_/d(_t) as functions of

At. This appears to be an improvement over the method suggested in reference 8

for solving this same problem.

RESULTS

In order to demonstrate the usefulness of the criterion expressed by equa-

tion (22), let it be shown that the expression vanishes for maximum m 3. For

this example, a total mission time of 940 days and a waiting time at Mars of 510

days are chosen along with a starting date of April 9, 1969 (Julian date,

244 0520.5).

The trajectories for this study were computed on a 7090 computer at the

Lewis Research Center. All integrations were performed with the Runge-Kutta nu-

merical technique using a step-size control to limit truncation error. Further-

more, the position and velocity components of Earth and Mars, which are needed in

this instance as starting and target data, were taken from curve fitted ephemeris

data stored on tape. (For further details on this computational system, see

ref. 9.) The two-point boundary value problem associated with each inbound and
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outbound trip was overcomeby using a multivariable Newton-Raphsonscheme, and
the required partial derivatives were obtained by integration of the equations
given in the appendix along with equations (i) and (4) of the ANALYSIS.

The propulsion system was assumedto be of the intermittent-thrust type op-
erating at a specific impulse of 8000 seconds and at an initial (t = to) thrust-
weight ratio of l×10 -4.

Figure 3 shows the coefficient of dt I in equation (22) and m 3 as a func-

tion of the Outbound travel time. This figure shows that the computed coeffi-

cient behaves exactly as _n3_t I (as can be verified by numerical differentia-

tion of the curve for m$) and thus passes through zero at the maximum value of

m 3 •

On the basis of the results shown in figure 3, making either equation (22)

or (35c) equal zero at the start of the inbound transfer will result in a pair of

trajectories that together form an optimum. This has been done for two-

dimensional transfers between circular orbits, including the effects of the plan-

etocentric maneuvers. (For details of the one-way, two-dimensional solution

used, see ref. 4.) Because of the circular-orbit assumption, both the outbound

travel time and angle are free for optimization, and there result two expressions

similar to equation (35c), which must be made to vanish at the start of the in-

bound transfer. Thus, both the inbound travel time and angle are found as part

of the inbound boundary value problem, and the mission time and waiting time

(which includes the maneuvers about the target planet) are determined as depen-

dent quantities. The details of a typical Earth-Mars solution of this kind are

illustrated in figure 4. In this example, the mission is assumed to begin and

end in a circular orbit about Earth at 1.10 Earth radii and to maneuver into and

out of a circular orbit about Mars at 1.10 Mars radii. All planetocentric maneu-

vers as well as such terms as _m5/_m 2 were calculated with the aid of a semi-

empirical approximate solution for escape and capture spirals. The propulsion

system used for the entire mission is again assumed to be of the intermittent-

thrust type and is characterized, when operating, by a specific impulse of 12,000

seconds and a thrust-weight ratio of 3X10 -4 at position 1 of figure 4.

When solutions of this type are computed, the independent parameters are the

outbound travel time and angle. The inbound transfer is then specified by de-

manding that the optimality conditions be satisfied at the start. It has been

found, however, that there are, at most, two (excluding multiple revolutions

about the Sun) inbound transfers that meet the specifications; thus, there re-

sult, at most, two distinctly different round trips for each choice of outbound
transfer.

CONCLUDING REMARKS

Most important, the method presented allows the straightforward mathematical

determination of certain partial derivatives that vanish when a maximum-payload

round-trip trajectory has been attained. Once these expressions are known and

set equal to zero, they become additional relations between quantities and param-

eters belonging to both the inbound and outbound transfers of an optimal round

trip. Thus, it becomes probable that these added relations can be used to re-
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strict the required computations to those transfers that belong together in an
optimummission. Should it not be possible to so restrict the c_nputations (be-
cause of computational difficulties), the method will at least allow rapid, di-
rect, and more accurate computation of desired partial derivatives that might
otherwise require finite-difference evaluation.

Finally, the proposed method is not restricted to interplanetary-transfer
problems and maybe useful for other variational problems associated with flight
mechanics.

Lewis Research Center
National Aeronautics and Space Administration

Cleveland, 0hioj November21, 1962
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APPENDIX- DIFFERENTIALEQUATIONSFORBOUNDARYVALUEPROBLEM

In most variational solutions, the two-point boundary value problem is usu-
ally overcomeby use of a multivariable Ne_ton-Raphsonscheme. In such methods
it will be necessary to have terms such as 8x(tf)/Ski(O ). A rapid way of ob-
taining very accurate values for these quantities is integration of a set of dif-
ferential equations for them. These differential equations can be obtained by
direct differentiation of equations (1) and (4) with respect to the parameters
hi(O). First, however, equation (5) is introduced into the system to give

_-_vx + _ __l i2 = -_s
m A

c_ h2

÷=-vy+:-qF _3---_6

= _vz + c_9- _3m -_ i4 = hlVxx + k2Vyx + h3Vzx

= u i5 = _lvxy + _2v_ + _sVzy

= v is = _:Vxz + _2Vyz + _3Vzz

=w i7 =_-9-A
m 2

i = -_ i9 = - __A
m

_i = -_ ilO --_s

(_)

where

V

_2+y2+z2

CA- h7
m

_'8 = _max - 213)-=

K

(_max - 2_)
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Differentiation of equations (A1) with respect to ki(O ) gives

D_ = - (VxxD_X+ Vr2_y + VzxDiz)

_ c_ kl c hl

m 2 -A- Dim + m _ Di_

D# =-(Vx  X+Vr2 y+Vz@iZ)

Di# = - (VxzDi x + VyzDiY + VzzDiZ)

c__ h2 c _

m 2 -K Dim + m -A- Di_

+ _ - _/_ - A'-'5(hlDihl + k2Dih2 " m 2 -_" Dim + m -A- Di_

Dii = Diu Dii I = -Dih 4

Di9 = Div Dii 2 = -Dih S

Di_ = Diw Dil 5 = -Dik 6

Di_ = -Di_

Di_ 4 = VxxDih I + VxyDih 2 + VxzDih 3 + (hlVxx x + h2Vxxy + hsVxxz)Dix

+ (klVyxx + A2Vyxy + hsVyxz)DiY + (%iVzx x + h2Vzxy + k3Vzxz)Di z

D_ = vr2_ I + Vr_D_2 +VyzDi_3+ (_iVxzx+ _2V_vy+ _3Vxy_)Dix

+ (hlVyy x + k2Vy _ + h3Vyyz)DiY + (hlVzy x + h2Vzyy + k3Vzyz)Di z

Dii 6 = VzxDikl + VzyDik 2 + VzzDik 3 + (klVxz x + %2Vxzy + hSVxzz)Oix

+ (_iVyzx+ _Vy_y + _3Vyzz)Diy+ (_Vzzx + _Vz_y + _3Vzzz)D±z

cA 2C_ADi mDi_7 = c____m2A(klDik I + hEDik2 + h3Dih3 ) +_ Di_ _ m 3

A __
Dih 9 = - _--_(klDih I + h2Dih 2 + hsDih_) - _Di_ + Dim

m 2

DiilO : (_m_ __ D ° (_Di__2_) ik7 - + h2Dik2 + h3Dik_)

+c_Di

K6max

+ (6max - 2_) _ Di_
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where

Di =

VTi =-_-Yi TI = x, T2 = y, Y3 = zR5

VyiTj R5 TiT j i _ j

vrirjrj - R5 r i -5
i_j

15_rirJk

%it jrk R 7

E
VyiYi_. i - RS - _\_-] J

R = V x2 + y2 + z2

Integration of equations (A2) begins with the boundary conditions

Dikj(0) = 0 i _ j

Dihj(0)= 1 ± = J

Dirj(O)= 0

Difficulty is encountered in equations (A2) when attempting to evaluate Di_
at points of discontinuity in _(t). Considering two neighboring trajectories

that differ only in the initial value of one of the h i (fig. 5)3 it can be seen
that

Di_ = _im (A3)
_i(o)_o _i(°)
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will be zero at all points except those corresponding to K(t) = 0, at which it

will be unbounded. This brief_ but infinite, pulse will cause a jump discontinu-

ity in all the DiY j that contain DiP in their differential equations.

The magnitude of this jump can be evaluated by considering the expression

DiYj(t0) = lim yJ(tS) - yj(t0)
(0)_0 _(0)

(A4)

where the subscript on t refers to the positions indicated in figure 5.

For sufficiently small Ahi(0) ,

yj(t 3) _ yj(t 0) + _(t0)(t I - to) + DiY_(t!)_i(0) + _j(t2)(t 3 - t2)

where the asterisk indicates values taken with propulsion on (K > 0); however,

K(tl)

k(t0 ) = (t I - tO ) : (t 2 - t5)

(m)

and

K(t I) -_ -D*K(t l)_i (0)

Equations (A4), (A5), and (A6) then combine to give

D_K(tl )
DiYj(t0) = lim _yj(tl) +

_i(o)_ _(t0) [Tj(t 2) - _(to)]l

(_)

(A7)

In the limit as 2_hi(0) approaches 0, t2 approaches to, but _j(tg) does not

approach _(t 0) because one of them excludes propulsive effects. This is true

unless the _j(t) is not affected by propulsion, as is the case with K; that is,

and

C

"K=_(XlX I+xz[ z+xsi s) +_A-i7
ra 2

i7 = c-k.a (AS)
m 2
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Thus

c (_l_ 1 + _2_2 + _5_3)

which is unaffected by the value of 6- Thusj equation (A7) becomesin the limit

Dir j - D_rj = (f_ - f_) D_K (A91
k

The term D_K is evaluated by differentiation of

c
K=--A-A

m 7

that is,

c (_lDt_ 1 + _2D_2 + _9_3) *DtK = _ - Di_V - m2D_m (A10)

Since D_ : O, equations (A2) indicate that D_m : 0 (or, more generally, a con-

stant), and equation (A10) becomes

c (_lD_1 + _2D_2 + _3D_5) _D_V (_l)

It is interesting to note, however, that DiK has the same value after the jumps

have occurred. This can be seen when equation (Ag) for yj = m, and _7 are
substituted into equation (AI0). This gives

DiK _ (hlDik I + kzDik 2 + hsDik 5) - D_h7 D_K cA (m - m*
K

Use of equations (A8) and _ = -_, though, shows that the last term in equa-

tion (AI2) vanishes.

Thus, by proceeding as indicated, all jump discontinuities can be evaluated

each time K passes through zero.

In the case of continuously variable thrust, the equations are simpler and

free of jump discontinuities. Equation (55) simplifies the components of thrust

acceleration so that the first three of equations (A2) become
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Di_ - _ (VxxDi_ + VyxDiy+ VzxDiZ) + _iKDi_l1

Div (Vxy Dix + VYY Diy + VY zDiz) + PJK Dik2 I

D_ (V_zD_X+Vy_Diy+Vz_D_z)+_KDiX33

(AIS)

Furthermore, the last three of equations (A2) are now unnecessary, and the mass

(which will depend on m(0) and Pj) can be integrated from

Pjm2A 2
-_ = _ = (A14)

2K 2

This latter expression comes from a combination of equations (27), (29)# and

(30). Since the constant K = m2(O)Z?(O)_ it may be chosen at will.
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Figure i. - Orientation of acceleration vector in three dimensions.
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Figure 2. - Typical round-trlp trajectories.
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